Abstract

We consider a family of stochastic processes built from infinite sums of independent positive random functions on \BBR+. Each of these functions increases linearly between two consecutive negative jumps, with the jump points following a Poisson point process on \BBR+. The motivation for studying these processes stems from the fact that they constitute simplified models for TCP traffic. Such processes bear some analogy with Levy processes, but are more complex since their increments are neither stationary nor independent. In the work of Barral and Levy Vehel, the Hausdorff multifractal spectrum of these processes was computed. We are interested here in their Large Deviation and Legendre multifractal spectra. These “statistical” spectra are seen to give, in this case, a richer information than the “geometrical” Hausdorff spectrum. In addition, our results provide a firm theoretical basis for the empirical discovery of the multifractal nature of TCP traffic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.