Abstract

Multi-user multi-input-multi-output (MU-MIMO) systems transmit data to multiple users simultaneously using the spatial degrees of freedom with user feedback channel state information (CSI). Most of the existing literatures on the reduced feedback user scheduling focus on the throughput performance, while the user queueing delay is usually ignored. As the delay is very important for real-time applications, a low feedback queue-aware user scheduling algorithm is desired for the MU-MIMO system. This paper proposes a two-stage queue-aware user scheduling algorithm, which consists of a queue-aware mobile-driven feedback filtering stage and a user scheduling stage, where the feedback filtering policy is obtained from optimizations. We evaluate the queueing performance of the proposed scheduling algorithm by using the sample path large deviation analysis. We show that the large deviation decay rate for the proposed algorithm is much larger than that of the CSI-only user scheduling algorithm. The numerical results also demonstrate that the proposed algorithm performs much better than the CSI-only algorithm, while requiring only a small amount of feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.