Abstract
In a number of applications, the underlying stochastic process is modeled as a finite-state discrete-time Markov chain that cannot be observed directly and is represented by an auxiliary process. The maximum a posteriori (MAP) estimator is widely used to estimate states of this hidden Markov model through available observations. The MAP path estimator based on a finite number of observations is calculated by the Viterbi algorithm, and is often referred to as the Viterbi path. It was recently shown in, and, (see also and) that under mild conditions, the sequence of estimators of a given state converges almost surely to a limiting regenerative process as the number of observations approaches infinity. This in particular implies a law of large numbers for some functionals of hidden states and finite Viterbi paths. The aim of this paper is to provide the corresponding large deviation estimates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.