Abstract

The random forced Navier--Stokes equation can be obtained as a variational problem of a proper action. By virtue of incompressibility, the integration over transverse components of the fields allows to cast the action in the form of a large deviation functional. Since the hydrodynamic operator is nonlinear, the functional integral yielding the statistics of fluctuations can be practically computed by linearizing around a physical solution of the hydrodynamic equation. We show that this procedure yields the dimensional scaling predicted by K41 theory at the lowest perturbative order, where the perturbation parameter is the inverse Reynolds number. Moreover, an explicit expression of the prefactor of the scaling law is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.