Abstract

ABSTRACTDifferential synthetic aperture radar interferometry (D-InSAR) is limited when exploited in high-intensity mining areas, because large deformation gradients lie beyond the maximum measurable value of the D-InSAR technique which breaks the prerequisite for successfully employing of the method. The SAR amplitude-based pixel-tracking method provides an alternative way to efficiently and robustly extract the large deformation distribution particularly when the D-InSAR technique is limited by loss of coherence. In addition, the deformation in the line-of-sight direction and the deformation along the azimuth direction are also presented in this paper with 24-day interval repeat-pass high-resolution Rardarsat-2 imagery. Combining both of these techniques can help to better understand the deformation mechanisms associated with underground mining activities. The accuracies of 0.12 m in slant-range direction and 0.19 m in the azimuth direction were achieved, respectively. Besides, the profiles across the maximum deformation region have verified that the deformation occurred during two acquisition periods is far beyond the theoretical maximum deformation gradient corresponding to high-resolution C-band SAR data. The obtained surface motion infers to the mining activities and assessed damage caused by the large deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call