Abstract

The large deformation frictional contact between shell structures is commonplace in engineering applications like the sheet metal forming process. Due to the specific assumptions of shell structures, the numerical calculation of shell contact is more complicated than the computation of contact between normal two or three dimensional solids. In recent years, the Kirchhoff–Love shell has become one of the most popular mathematical shell models under the context of isogeometric analysis. In this paper, we detailedly formulate the frictional contact contributions for Kirchhoff–Love shell structures considering both stick and slide states. The variation and linearization of contact variables considered to be sophisticated are explicitly derived and plainly organized. The general nonlinear hyperelastic materials are utilized to describe the constitutive relations of shell structures undergoing large deformation. The normal and tangential contact constraints are enforced using the classical penalty method. Based on the precise representation of shell structures using NURBS functions, we developed an effective contact detection algorithm to accurately capture the contact areas between shells. A computation framework for solving Kirchhoff–Love shell frictional contact problems is established in the context of NURBS-based isogeometric analysis. Several shell contact examples are calculated, and the obtained results are compared with those of the classical finite element method. The convergence and accuracy of the presented method are verified in these examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call