Abstract

Different from conventional materials, materials with negative Poisson's ratios expand laterally when stretched longitudinally. Known as ‘auxetic’ materials, the effect means they possess particularly fascinating properties, which have recently attracted considerable attention in the literature. A range of auxetic materials has been discovered, theoretically designed and fabricated. Developments in additive manufacturing (AM) techniques enable fabrication of materials with intricate cellular architectures. This paper outlines recent progress in the development of auxetic materials and structures, and their mechanical properties under quasi-static and dynamic loading are analysed and summarised. Limited experimental studies on 3D printed auxetic materials and structures are given more attention, ahead of extensively finite element (FE) simulations. A special focus is dedicated to their large, plastic deformation behaviour and energy absorption performance, which should be stressed in their engineering applications; no review paper has yet been found regarding this. Finally, this paper provides an overview of current study limitations, and some future research is envisaged in terms of auxetic materials and structures, nano-auxetics and additive manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.