Abstract

The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.