Abstract
This paper uses the large deflection orthotropic plate approach to develop the ultimate strength formulations for steel stiffened panels under combined biaxial compression/tension and lateral pressure loads, considering the overall (grillage) buckling collapse mode. The object panel has a number of one-sided small stiffeners in either one or both orthogonal directions. The stiffened panel is then modeled as an equivalent orthotropic plate, for which the various elastic constants characterizing structural orthotropy are determined in a consistent systematic manner using classical theory of elasticity. The panel edges are considered to be simply supported. The influence of initial deflections is taken into account. The membrane stress distribution inside the panel under combined uniaxial loading (in either longitudinal or transverse direction) and lateral pressure is analyzed by solving the nonlinear governing differential equations of large deflection orthotropic plate theory. It is presumed that the panel collapses when the most highly stressed boundary location yields, resulting in closed-form expressions for the ultimate strength of the stiffened panel. Based on the insights previously developed through numerical studies, the panel ultimate strength interaction formulation between biaxial loads, with lateral pressure regarded as a secondary load component is then proposed as a relevant combination of the two sets of panel ultimate strength formulations, i.e. one for combined longitudinal axial load and lateral pressure and the other for combined transverse axial load and lateral pressure. The validity of the proposed ultimate strength formulations is verified by a comparison with nonlinear finite element and other numerical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.