Abstract

Based on the von Karman plate theory of large deflection, we derive the nonlinear partial differential equation for a rectangular magnetoelectroelastic thin plate under the action of a transverse static mechanical load. By employing the Bubnov–Galerkin method, the nonlinear partial differential equation is transformed to a third-order nonlinear algebraic equation for the maximum deflection where a coupling factor is introduced for determining the coupling effect on the deflection. Numerical results are carried out for the thin plate made of piezoelectric BaTiO 3 and piezomagnetic CoFe 2O 4 materials. Some interesting results are obtained which could be useful to future analysis and design of multiphase composite plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.