Abstract

An electrostatically driven silicon micro scanning mirror (MSM) for one-dimensional (1-D) and two-dimensional (2-D) deflection of light is presented. A special configuration of the driving electrodes allows the use of small electrode gaps without restricting the deflection of the plate geometrically. In this paper, the starting of the oscillation and the operation of the scanner is discussed. Experimental results show that scan angles of up to 60/spl deg/ can be achieved at a driving voltage of only 20 V. The 2-D deflection of a laser beam is obtained by a gimbal mounting of the mirror plate. For the fabrication of the devices, SOI-wafers are used as the base material. The mechanical structures are defined by a deep silicon etch. For the electrical isolation of areas on the movable frame, polysilicon-filled trenches are used. The mechanical stability of the scanners is tested. The devices resist shocks of more than 1000 g and show no change of the resonance frequency even after long run tests of 7/spl times/10/sup 9/ periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.