Abstract

Large-deflection bending of fully clamped slender metal foam-filled rectangular tubes is investigated theoretically, experimentally and numerically. A plastic yield criterion for the foam-filled rectangular tube is proposed. Considering the filled foam strength effect and the interaction of bending and stretching, an analytical solution is proposed to predict the structural response of the foam-filled rectangular tubes transversely loaded by a flat punch. Clamped bending tests of aluminium alloy foam-filled rectangular tubes are conducted. The analytical model captures experimental results reasonably. Numerical calculations are carried out to predict the large-deflection behavior of the foam-filled tubes, and good agreement is achieved between the analytical solutions and numerical results. The effects of wall thickness of tube, punch size and filled foam strength are discussed in detail. It is demonstrated that the present analytical model can reasonably predict the post-yield behavior of the foam-filled rectangular tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.