Abstract

In this article, an attempt has been made on evaluating the large/nonlinear deflection of functionally graded magneto-electro-elastic porous (FG-MEEP) flat panels taking geometric skewness into consideration. Further, the flat panel is subjected to combined loads which include mechanical, electrical and magnetic loads. The mathematical formulation is derived through higher order shear deformation theory and von-Karman's geometric nonlinearity under the framework of finite element method (FEM). The effective material properties of FG-MEEP material are determined using modified power law. Two forms of material gradation such as ‘B’ rich bottom and ‘F’ rich bottom are modelled and implemented in the analysis. The numerical assessment is carried out to investigate the effect of prominent parameters such as skew angle, porosity distribution, gradient index, porosity volume, functionally graded pattern, electromagnetic loads on the nonlinear deflection of FG-MEEP flat panels. In addition, this study also makes an attempt to evaluate the degree of coupling associated with these parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.