Abstract

We consider the initial-value problem for the Chern–Simons–Schrödinger system, which is a gauge-covariant Schrödinger system in Rt×Rx2 with a long-range electromagnetic field. We show that, in the Coulomb gauge, it is locally well-posed in Hs for s⩾1, and the solution map satisfies a local-in-time weak Lipschitz bound. By energy conservation, we also obtain a global regularity result. The key is to retain the non-perturbative part of the derivative nonlinearity in the principal operator, and exploit the dispersive properties of the resulting paradifferential-type principal operator using adapted Up and Vp spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.