Abstract
Normal support vector machine (SVM) is not suitable for classification of large data sets because of high training complexity. Convex hull can simplify the SVM training. However, the classification accuracy becomes lower when there exist inseparable points. This paper introduces a novel method for SVM classification, called convex---concave hull SVM (CCH-SVM). After grid processing, the convex hull is used to find extreme points. Then, we use Jarvis march method to determine the concave (non-convex) hull for the inseparable points. Finally, the vertices of the convex---concave hull are applied for SVM training. The proposed CCH-SVM classifier has distinctive advantages on dealing with large data sets. We apply the proposed method on several benchmark problems. Experimental results demonstrate that our approach has good classification accuracy while the training is significantly faster than other SVM classifiers. Compared with the other convex hull SVM methods, the classification accuracy is higher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.