Abstract

We consider a mesoscopic model for a spatially extended FitzHugh-Nagumo neural network and prove that in the regime where short-range interactions dominate, the probability density of the potential throughout the network concentrates into a Dirac distribution whose center of mass solves the classical non-local reaction-diffusion FitzHugh-Nagumo system. In order to refine our comprehension of this regime, we focus on the blow-up profile of this concentration phenomenon. Our main purpose here consists in deriving two quantitative and strong convergence estimates proving that the profile is Gaussian: the first one in a L1 functional framework and the second in a weighted L2 functional setting. We develop original relative entropy techniques to prove the first result whereas our second result relies on propagation of regularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.