Abstract

S. Argyros and N. Kalamidas([l], repeated in [2], Theorem 6·15) proved the following. If κ is a cardinal of uncountable cofinality, and 〈Eξ〉ξ<κ is a family of measurable sets in a probability space (X, μ) such that infξ<κμEξ = δ, and if n ≥ 1, , then there is a set Γ ⊆ κ such that #(Γ) = κ and μ(∩ξ∈IEξ) ≥ γ whenever I ⊆ ξ has n members. In Proposition 7 below I refine this result by (i) taking any γ < δn (which is best possible) and (ii) extending the result to infinite cardinals of countable cofinality, thereby removing what turns out to be an irrelevant restriction. The proof makes it natural to perform a further extension to general uniformly bounded families of non-negative measurable functions in place of characteristic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.