Abstract

Iron removal from serum transferrin by various chelators has been studied by gel electrophoresis, which allows direct quantitation of all four forms of transferrin (diferric, C-monoferric, N-monoferric, and apotransferrin). Large cooperativity between the two lobes of serum transferrin is found for iron removal by several different chelators near physiological conditions (pH 7.4, 37 degrees C, 150 mM NaCl, 20 mM NaHCO(3)). This cooperativity is manifested in a dramatic decrease in the rate of iron removal from the N-monoferric transferrin as compared with iron removal from the other forms of ferric transferrin. Cooperativity is diminished as the pH is decreased; it is also very sensitive to changes in chloride ion concentration, with a maximum cooperativity at 150 mM NaCl. A mechanism is proposed that requires closure of the C-lobe before iron removal from the N-lobe can be effected; the "open" conformation of the C-lobe blocks a kinetically significant anion-binding site of the N-lobe, preventing its opening. Physiological implications of this cooperativity are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call