Abstract

This paper describes large positive cooperative effects of two orders of magnitude in the tunneling rates across molecular junctions of mixed self-assembled monolayers (SAMs) of rectifying (ferrocenyl undecanethiol HS(CH2)11Fc) and non-rectifying molecules with different terminal groups (11-undecanethiol and its derivatives, denoted as HS(CH2)11X, where X = -H, -NH2 or -NO2). By gradually diluting the surface fraction of HS(CH2)11Fc in the mixed SAM, it is found that the large positive cooperative effect is only important in the coherent tunneling regime but not in the incoherent tunneling regime. Density functional theory (DFT) shows that the measured cooperative effects in the tunneling rates in these binary systems are caused by Fc---X van der Waals interactions which increase in the order of -H< -NH2< -NO2. These strong cooperative effects dramatically alter the operation of a molecular diode, further highlighting the importance of taking cooperative effects into account, in this case driven by van der Waals interactions, in the rational design of electronic devices working at tunneling regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call