Abstract

In this paper we study the size of the largest clique ω(G(n, α)) in a random graph G(n, α) on n vertices which has power-law degree distribution with exponent α. We show that, for ‘flat’ degree sequences with α > 2, with high probability, the largest clique in G(n, α) is of a constant size, while, for the heavy tail distribution, when 0 < α < 2, ω(G(n, α)) grows as a power of n. Moreover, we show that a natural simple algorithm with high probability finds in G(n, α) a large clique of size (1 − o(1))ω(G(n, α)) in polynomial time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call