Abstract

AbstractOn 31 May 2013, a line of severe tornadic thunderstorms (the El Reno event) developed during the local afternoon in central Oklahoma, USA. Within range of the Oklahoma Lightning Mapping Array, the evolution of the event can be separated into three distinct periods: an Early period (before 02:00 UTC on 1 June) when the storm consisted of discrete supercells, a Middle period (02:00–05:00 UTC) when the convection began merging into a linear feature and stratiform precipitation developed, and a Late period (after 05:00 UTC) featuring a mature mesoscale convective system (MCS). Each of these periods demonstrated distinct patterns in the large (>100 C km) charge moment change (CMC) lightning that was produced. During the Early period, large‐CMC positive cloud‐to‐ground (+CG) lightning was produced in the convective cores of supercells. These flashes were small in area (typically <500 km2) and were commonly associated with a sloping midlevel positive charge region in the echo overhang on the storm's forward flank. The Middle period featured a population of larger +CMCs (>500 km2, >300 C km) in the developing stratiform, similar to typical sprite‐parent lightning in MCSs. During the Late period, convective large CMC +CGs ceased and instead large‐CMC negative CGs were produced in and near the MCS convection. These flashes neutralized charge both in convection as well as in adjacent stratiform and anvil precipitation. The results suggest that the CMC metric has potential applications for studying tropospheric weather.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call