Abstract

Recently, the SO(5) Clebsch-Gordan (CG) coefficients up to the seniority vmax = 40 were computed in floating point arithmetic (T.A. Welsh, unpublished (2008)); and, in exact arithmetic, as square roots of rational numbers (M.A. Caprio et al., to be published in Comput. Phys. Commun.). It is shown in this paper that extending the QQQ model calculations set up in the work by D.J. Rowe and G. Thiamova (Nucl. Phys. A 760, 59 (2005)) to N = vmax = 40 is sufficient to obtain the IBM results converged to its Bohr contraction limit. This will be done by comparing some important matrix elements in both models, by looking at the seniority decomposition of low-lying states and at the behavior of the energy and B(E2) transition strengths ratios with increasing seniority.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.