Abstract

Millimetre and sub-millimetre astronomical polarimeters have traditionally been based on birefringent Half Wave Plates (HWPs) used as polarisation modulating elements. Although moderate bandwidth can be achieved using the Pancharatnam designs there are limitations in terms of diameters, weights and associated losses. In addition, the rapid advance in array detector technology at these wavelengths has created a pressing need for large diameter HWPs which exceed those possible with crystalline materials. The first metamaterial HWP was developed using an air-gap mesh filter technology, which demonstrated the feasibility. This was subsequently replaced by a more robust dielectrically embedded version which can be fabricated in much larger diameters than are available to crystalline plates and being basically a plastic material is also much lighter. The present development in this area is focussed on achieving large bandwidths (over 100%), large diameters (500mm or larger) and low losses (<1% at cryogenic temperatures). Here we review different approaches to the design and show how a trade-off of the different HWP parameters (transmissions, differential phase-shift, cross-polarisation, absorptions) can lead to optimal performances for specific instrument configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.