Abstract
AbstractThree‐dimensional photonic crystals (3D PhCs) enable light manipulations in all three spatial dimensions, however, real world applications are still faced with challenges in fabrication. Here, a facile fabrication strategy for 3D silicon PhCs with a simple cubic (SC) lattice structure is presented, which exhibits a complete photonic bandgap at near‐infrared wavelengths of around 1100 nm. The fabrication process is composed of standard deep ultra‐violet stepper lithography, followed by a single‐run modified plasma etch process. By applying a direct dry etch release step at the end of the 3D structural etch process, the fabricated 3D PhCs can be released and transferred in the form of a membrane onto other substrates such as glass, polymers, or even substrates with engineered surface. The thickness of the demonstrated membranes is around 2 µm and the size can be up to a few millimeters. A high reflectivity is observed at the stop band frequency, and a planar defect is introduced during the etching process resulting in an optical resonance mode with a small linewidth of around 30 nm. The structure constitutes an optical bandpass filter and can be used as a sensor for organic solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.