Abstract

This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe2 monolayer. The growth mechanism of the snow-like MoSe2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call