Abstract
AbstractLithium–sulfur (Li–S) batteries are appealing candidates for next‐generation high‐energy rechargeable batteries, but practical applications are still limited by poor cyclic life, which is caused by severe polysulfide shuttling in high‐sulfur‐loading batteries. Herein, a facile route is presented to fabricate high‐performance Li–S batteries using a crystalline microporous membrane, which is prepared using a conductive metal–organic framework (MOF) material. With ordered microporous structure, large specific surface area, good sulphiphilicity, and excellent conductivity, the MOF membrane is grown in situ on the commercial separator and is an ideal light‐weight barrier (0.066 mg cm−2) for suppressing the polysulfide shuttling, which can significantly promote the capacities, rate capabilities, and cycling stabilities of Li–S batteries. Taking the advantage of this functional separator, the high‐sulfur‐loading Li–S battery (8.0 mg cm−2 and 70 wt% of sulfur in cathode) delivers a high area capacity of 7.24 mAh cm−2 after 200 cycles, thus providing a promising path toward advanced Li–S batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.