Abstract
Eutectic-gallium-indium particle (EGaIn*) is considered one of the promising conducting materials for soft electronics due to its enhanced stability compare to bulk EGaIn and constant conductance under strain. However, its practical implementation has thus far been limited due to the challenges of achieving initial electrical conductivity and the incompatibility with well-developed fabrication strategies. Here, we report materials and manufacturing methods that allow large-area multi-layered patterning of ‘polystyrene sulfonate (PSS)-attached EGaIn* (EGaIn*:PSS)’ thin-film with the conventional cleanroom process. PSS enhances the stability of EGaIn*, which allow uniform thin-film coating and photographic lift-off at a wafer-scale down to 10 μm features of varying thicknesses. Using dimethyl sulfoxide as the solvent during lift-off induces cohesion between EGaIn*:PSS, resulting in initial electrical conductivity without an additional activation process. Demonstrations of stretchable display, multilayer pressure sensing systems, and soft artificial finger validate the versatility and reliability of this manufacturing strategy for soft electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.