Abstract

Homoporous membranes (HOMEs) featuring through pores with almost identical apertures, are highly desired for high-precision separations. It remains a major challenge to produce large-area HOMEs because the microstructure control and defect annihilation become increasingly difficult when membrane sizes are dramatically increased. Herein, we propose a multiple annealing strategy to fabricate large-area HOMEs. Polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) films are first coated on smooth and large substrates. Being annealed by chloroform vapor, perpendicularly aligned P2VP cylinders are formed within the films, and further converted into through pores via the mechanism of selective swelling-induced pore generation. It is shown that the conventional single-time annealing is inadequate to create the ordered through pores, because P2VP chains may have no sufficient time to locomote to the right position as required for the ideal hexagonally arranged ordering. By virtue of the multiple annealing, well-defined through pores can be generated after consecutive annealing for three times, as more P2VP chains aggregate into the ideally ordering position. The films are transferred and composited onto macroporous substrates, producing composite membranes with an effective area of up to ∼100 cm2. The resultant membranes exhibit excellent separation performances. Importantly, HOMEs can be fabricated on low-cost substrates via this strategy, highlighting their great promise in real-world applications of high-precision separations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.