Abstract

By combining nanosphere lithography with oblique angle deposition, large-area asymmetric compound Ag nanohole arrays with nanorods inside the hole were patterned on substrates. The technique enabled the production of complex nanohole arrays with controlled hole diameter, thickness, and rod structure inside the hole. The compound asymmetric Ag nanohole structures showed strong polarization-dependent optical properties, and a new extraordinary optical transmission (EOT) mode with tunable resonance wavelength at the near-IR region was observed. The transmission at the new EOT wavelength region can increase from 27% of nanohole to 69% of the compound structure, and these structures can achieve a refractive index sensitivity as high as 847 nm RIU-1. The tunable EOT wavelength and strong polarization-dependent optical properties make the structure ideal for ultrathin optical filters, polarizers, surface-enhanced spectroscopies, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.