Abstract

Many materials with nanofluidic channels are exploited to achieve salinity gradient energy conversion. However, most materials are fragile, difficult to process, or only prepared into a limited size, which greatly restricts their practical application in the future. Herein, a covalent organic polymers membrane with high mechanical property and stability is fabricated, which can keep integrity in harsh conditions for up to 1 month. In addition, by using the sol-gel approach, a large-area membrane with an area of 26 × 26cm is expediently fabricated in lab conditions. When the membrane is applied to salinity gradient energy conversion, the maximum output power density is up to 6.21 Wm-2 . This work provides a simple method for the fabrication of large-area membrane for salinity gradient energy conversion in future real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.