Abstract
Information on the distribution of tropical forests is critical to decision-making on a host of globally significant issues ranging from climate stabilization and biodiversity conservation to poverty reduction and human health. The majority of tropical nations need high-resolution, satellite-based maps of their forests as the international community now works to craft an incentive-based mechanism to compensate tropical nations for maintaining their forests intact. The effectiveness of such a mechanism will depend in large part on the capacity of current and near-future Earth observation satellites to provide information that meets the requirements of international monitoring protocols now being discussed. Here we assess the ability of a state-of-the-art satellite radar sensor, the ALOS/PALSAR, to support large-area land cover classification as well as high-resolution baseline mapping of tropical forest cover. Through a comprehensive comparative analysis involving twenty separate PALSAR- and Landsat-based classifications, we confirm the potential of PALSAR as an accurate (>90%) source for spatially explicit estimates of forest cover based on data and analyses from a large and diverse region encompassing the Xingu River headwaters in southeastern Amazonia. Pair-wise spatial comparisons among maps derived from PALSAR, Landsat, and PRODES, the Brazilian Amazon deforestation monitoring program, revealed a high degree of spatial similarity. Given that a long-term data record consisting of current and future spaceborne radar sensors is now expected, our results point to the important role that spaceborne imaging radar can play in complementing optical remote sensing to enable the design of robust forest monitoring systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.