Abstract
Two-dimensional functional metal-organic frameworks and coordination polymers have attracted much attention and have been successfully prepared in solutions and at interfaces through the coordination of ligands to metal ions. However, the preparation of large-area ultrathin ordered films is still a challenge. Here, a modified liquid/liquid interfacial epitaxial growth method has been developed. A planar liquid/liquid interface between a chloroform solution of bipyridine derivatives and pure water was constructed first, and then an aqueous solution of Eu3+ or Cu2+ ions was added dropwise into the water phase. A layered ultrathin film with the size of several hundreds of square micrometers appeared at the liquid/liquid interface after a certain time. The monitoring results showed that the formation of ultrathin films was a result of continuous epitaxial growth of the adsorbed species due to the synergistic effects of hydrophobic effects of the alkyl chains, coordination bonds between the ligands and metal ions, π-π interactions between the ligands, and the restriction of the interface on the vertical growth. This offers a way to fabricate more large-area thin films of amphiphilic molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.