Abstract

A new laser differential confocal ultra-long focal length measurement (LDCFM) method is proposed with the capability to self-calibrate the reference lens (RL) focal length and the axial space between the test lens and RL. Using the property that the focus of laser differential confocal ultra-long focal length measurement system (LDCFS) precisely corresponds to the null point of the differential confocal axial intensity curve, the proposed LDCFM measures the RL focal length f(R)' by precisely identifying the positions of the focus and last surface of RL, measures the axial space d(0) between RL and test ultra-long focal length lens (UFL) by identifying the last surface of RL and the vertex of UFL last surface, and measures the variation l in focus position of LDCFS with and without test UFL, and then calculates the UFL focal length f(T)' by the above measured f(R)', d(0) and l. In addition, a LDCFS based on the proposed method is developed for a large aperture lens. The experimental results indicate that the relative uncertainty is less than 0.01% for the test UFL, which has an aperture of 610 mm and focal length of 31,000 mm. LDCFM provides a novel approach for the high-precision focal-length measurement of large-aperture UFL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.