Abstract

Large aperture high-pressure gas laser discharges are a prerequisite for the development of high-energy gas lasers of sufficient power for the production of plasmas of thermonuclear interest. Of the several approaches being followed toward the attainment of such discharges, one utilizing weak volumetric preionization of the active gas region produced by UV radiation is described. The use of this technique has resulted in the successful generation of atmospheric-pressure CO 2 laser discharges between electrodes separated by 30 cm, having total cross sections of ∼600 cm2. With input energies of ∼200 J/1 small signal gain values of 4-5 percent cm-1were measured in 1 : 1 : 3 gas mixtures of CO 2 , N 2 , and He, respectively. It is thus concluded that this excitation technique could be incorporated into the fabrication of large volume gas laser amplifiers having beam cross sections in excess of 103cm2and total output-energy capabilities of \sim 10^{4} J.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.