Abstract
Anomalous Nernst effect (ANE), converting a heat flow to transverse electric voltage, originates from the Berry phase of electronic wave function near the Fermi energy EF. Thus, the ANE provides a sensitive probe to detect a topological state that produces large Berry curvature. In addition, a magnet that exhibits a large ANE using low-cost and safe elements will be useful to develop a novel energy harvesting technology. Here, we report our observation of a high ANE exceeding 3 microvolts per kelvin above room temperature in the kagome ferromagnet Fe3Sn with the Curie temperature of 760 kelvin. Our theoretical analysis clarifies that a “nodal plane” produces a flat hexagonal frame with strongly enhanced Berry curvature, resulting in the large ANE. Our discovery of the large ANE in Fe3Sn opens the path for the previously unexplored functionality of flat degenerate electronic states and for developing flexible film thermopile and heat current sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.