Abstract

AbstractWhistler mode waves in the plasmasphere and plumes drive significant losses of energetic electrons from the Earth's radiation belts into the upper atmosphere. In this study, we conducted a survey of amplitude‐dependent whistler wave properties and analyzed their associated background plasma conditions and electron fluxes in the plasmasphere and plumes. Our findings indicate that extremely large amplitude (>400 pT) whistler waves (a) tend to occur at L > 4 over the midnight‐dawn‐noon sectors and have small wave normal angles; (b) are more likely to occur during active geomagnetic conditions associated with higher fluxes of anisotropic electrons at 10 s keV energies; and (c) tend to occur at higher latitudes up to 20° with increasing amplitude. These results suggest that extremely large amplitude whistler waves in the plasmasphere and plumes could be generated locally by injected electrons during substorms and further amplified when propagating to higher latitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call