Abstract

AbstractWe surveyed 4 years of MESSENGER magnetic field data and analyzed intervals with observations of large‐amplitude oscillatory motions of Mercury's cross‐tail current sheet, or flapping waves, characterized by a decrease in magnetic field intensity and multiple reversals of BX, oscillating with a period on the order of ~4 – 25 seconds. We performed minimum variance analysis (MVA) on each flapping wave event to determine the current sheet normal. Statistical results showed that the flapping motion of the current sheet caused it to warp and tilt in the y‐z plane, which suggests that these flapping waves are kink‐type waves propagating in the cross‐tail direction of Mercury's magnetotail. The occurrence of flapping waves shows a strong preference in Mercury's duskside plasma sheet. We compared our results with the magnetic double‐gradient instability model and examined possible flapping wave excitation mechanism theories from internal (e.g., finite gyroradius effects of planetary sodium ions Na+ on magnetosonic waves) and external (e.g., solar wind variations and K‐H waves) sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.