Abstract

To accurately characterize the large amplitude motions and soft degrees of freedom of isolated molecules, sampling their conformational landscape by molecular mechanics and quantum chemical calculations may provide a valuable insight into the structure and dynamics. However, the resulting models need to be validated by a reliable experimental counterpart. For ethyl pentanoates, which belong to the family of fruit esters, benchmark calculations at different levels of theory showed that the C-C bond in proximity to the ester carbonyl group exhibits a large amplitude motion that is extremely sensitive to the choice of quantum chemical method and basis set. In such cases, insights from high-resolution molecular jet techniques are ideal to accurately identify and characterize soft degrees of freedom. Here, we report on the most abundant conformer of ethyl 2-ethyl butyrate using Fourier-transform microwave spectroscopy. We show that - unlike other structurally related pentanoates for which gas-phase and crystallographic data is available - ethyl 2-ethyl butyrate possesses a Cs symmetry plane under molecular jet conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call