Abstract

The plastic network model (PNM) is used to generate a conformational change pathway for Escherichia coli adenylate kinase based on two crystal structures, namely that of an open and a closed conformer. In this model, the energy basins corresponding to known conformers are connected at their lowest common energies. The results are used to evaluate and analyze the minimal energy pathways between these basins. The open to closed transition analysis provides an identification of hinges that is in agreement with the existing definitions based on the available X-ray structures. The elastic energy distribution and the C(alpha) pseudo-dihedral variation provide similar information on these hinges. The ensemble of the 45 published structures for this protein and closely related proteins is shown to always be within 3.0 A of the pathway, which corresponds to a conformational change between two end structures that differ by a C(alpha)-atom root-mean-squared deviation of 7.1A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.