Abstract

A longstanding avenue of research in orientable surface topology is to create and enumerate collections of curves in surfaces with certain intersection properties. We look for similar collections of curves in non-orientable surfaces. A surface is non-orientable if and only if it contains a Mobius band. We generalize a construction of Malestein-Rivin-Theran to non-orientable surfaces to exhibit a lower bound for the maximum number of curves that pairwise intersect 0 or 1 times in a generic non-orientable surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.