Abstract

Dissolved wafer process (DWP) is being extensively used to fabricate complex micro-electro-mechanical system (MEMS) structures. Etching non-uniformity, increased surface roughness and duration of DWP is often influence MEMS devices yields. This paper presents a modified DWP involving lapping and polishing followed by chemical etching of silicon to release MEMS based structure. The lapping experiments are performed using silicon-carbide (SiC) and alumina (Al2O3) abrasive. The polishing of the silicon samples is also done. The lapped and polished surfaces are compared with etched silicon surfaces in KOH and EDP solutions. The lapping-polishing process is found to be 2.5 (Al2O3)–3 (SiC) times faster than a standard etching processes based on KOH and EDP solutions. The average roughness (Ra) of the lapped–polished silicon surfaces are found to be 19.2 and 32.9 nm corresponding to SiC and Al2O3 abrasive respectively. The Ra value of EDP and KOH etched silicon surfaces are found to be 16.2 and 238.3 nm respectively. Based on the lapping—polishing results, SiC based lapping followed by polishing of silicon surface can be used as an alternate of etching of silicon during DWP. In this paper, a two-step DWP, involving lapping-polishing followed by EDP chemical etching of silicon, is used to fabricate suspended comb-type microaccelerometer structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call