Abstract

The kinetic energy is the center of a controversy between two opposite points of view about its role in the formation of a chemical bond. One school states that a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism of covalent bonding. In contrast, the opposite school holds that a chemical bond is formed by a decrease in the potential energy due to a concentration of electron density within the binding region. In this work, a topographic analysis of the Hamiltonian Kinetic Energy Density (KED) and its laplacian is presented to gain more insight into the role of the kinetic energy within chemical interactions. This study is focused on atoms, diatomic and organic molecules, along with their dimers. In addition, it is shown that the laplacian of the Hamiltonian KED exhibits a shell structure in atoms and that their outermost shell merge when a molecule is formed. A covalent bond is characterized by a concentration of kinetic energy, potential energy and electron densities along the internuclear axis, whereas a charge-shift bond is characterized by a fusion of external concentration shells and a depletion in the bonding region. In the case of weak intermolecular interactions, the external shell of the molecules merge into each other resulting in an intermolecular surface comparable to that obtained by the Non-covalent interaction (NCI) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.