Abstract

In this paper the response of nonlinear systems under stationary Gaussian white noise excitation is studied. The Path Integral (PI) approach, generally employed for evaluating the response Probability Density Function (PDF) of systems in short time steps based on the Chapman-Kolmogorov equation, is here used in conjunction with the Laplace’s method of integration. This yields an approximate analytical solution of the integral involved in the Chapman-Kolmogorov equation. Further, in this manner the repetitive integrations, generally required in the conventional numerical implementation of the procedure, can be circumvented. Application to a nonlinear system is considered, and pertinent comparisons with stationary analytical solutions are presented, demonstrating the efficiency and accuracy of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.