Abstract
This paper presents a modified Laplace transform homotopy perturbation method with finite boundary conditions (MLT–HPM) designed to improve the accuracy of the approximate solutions obtained by LT–HPM and other methods. To this purpose, a suitable initial approximation will be introduced, in addition, the residual error in several points of the interest interval (RECP) will be canceled. In order to prove the efficiency of the proposed method a couple of nonlinear ordinary differential equations with mixed boundary conditions, indeed, difficult to approximate, are proposed. The square residual error (S.R.E) of the proposed solutions will result to be of hundredths and tenths, requiring only a first order approximation of MLT–HPM, unlike LT–HPM, which will require more iterations for the same cases study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.