Abstract

The conserved densities of hydrodynamic type system in Riemann invariants satisfy a system of linear second order partial differential equations. For linear systems of this type Darboux introduced Laplace transformations, generalising the classical transformations in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the transformations of the corresponding hydrodynamic type systems. We discuss periodic Laplace sequences of with the emphasize on the simplest nontrivial case of period 2. For 3-component systems in Riemann invariants a complete discription of closed quadruples is proposed. They turn to be related to a special quadratic reduction of the (2+1)-dimensional 3-wave system which can be reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of the Lame and rotation coefficients Laplace transformations have a natural interpretation as the symmetries of the Dirac operator, associated with the (2+1)-dimensional n-wave system. The 2-component Laplace transformations can be interpreted also as the symmetries of the (2+1)-dimensional integrable equations of Davey-Stewartson type. Laplace transformations of hydrodynamic type systems originate from a canonical geometric correspondence between systems of conservation laws and line congruences in projective space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.