Abstract
Bell's polynomials have been used in many different fields, ranging from number theory to operators theory. In this article we show a method to compute the Laplace Transform (LT) of nested analytic functions. To this aim, we provide a table of the first few values of the complete Bell's polynomials, which are then used to evaluate the LT of composite exponential functions. Furthermore a code for approximating the Laplace Transform of general analytic composite functions is created and presented. A graphical verification of the proposed technique is illustrated in the last section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in the Theory of Nonlinear Analysis and its Application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.