Abstract

Nonlinear oscillators have wide applicability in science and engineering problems. In this paper, nonlinear oscillator having initial conditions varying over fuzzy numbers has been initially taken into consideration. Here, the fuzziness in the uncertain nonlinear oscillators has been handled using parametric form. Using parametric form in terms of r-cut, the nonlinear uncertain differential equations are reduced to parametric differential equations. Then, based on classical homotopy perturbation method (HPM), a parametric homotopy perturbation method (PHPM) is proposed to compute solution enclosure of such uncertain nonlinear differential equations. A sufficient convergence condition of parametric solution obtained using PHPM is also proved. Further, a parametric Laplace–Pade approximation is incorporated in PHPM for retaining the periodic characteristic of nonlinear oscillators throughout the domain. The efficiency of Laplace–Pade PHPM has been verified for uncertain Duffing oscillator. Finally, Laplace–Pade PHPM is also applied to solve other uncertain nonlinear oscillator, viz., Rayleigh oscillator, with respect to fuzzy parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.