Abstract
In this note we extend the main result in [6] on artinian ideals failing Lefschetz properties, varieties satisfying Laplace equations and existence of suitable singular hypersurfaces. Moreover we characterize the minimal generation of ideals generated by powers of linear forms by the configuration of their dual points in the projective plane and we use this result to improve some propositions on line arrangements and Strong Lefschetz Property at range 2 in [6]. The starting point was an example in [3]. Finally we show the equivalence among failing SLP, Laplace equations and some unexpected curves introduced in [3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.