Abstract

A mathematical model is presented for a constant-head test performed in a partially penetrating well with a finite-thickness skin. The model uses a no-flow boundary condition for the casing and a constant-head boundary condition for the screen to represent the partially penetrating well. The Laplace-domain solutions for the dimensionless flow rate at the wellbore and the hydraulic heads in the skin and formation zones are derived using the Laplace and finite Fourier cosine transforms. The solutions of hydraulic heads have been shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the pressure head and flow rate at the interface of the skin zone and undisturbed formation. In addition, an efficient algorithm for evaluating those solutions is also presented. The dimensionless flow rates obtained from new solutions have been shown to be better than those of Novakowski's solutions, especially when the penetration ratio is large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.