Abstract

SummaryWe consider the problem of Laplace deconvolution with noisy discrete non-equally spaced observations on a finite time interval. We propose a new method for Laplace deconvolution which is based on expansions of the convolution kernel, the unknown function and the observed signal over a Laguerre functions basis (which acts as a surrogate eigenfunction basis of the Laplace convolution operator) using a regression setting. The expansion results in a small system of linear equations with the matrix of the system being triangular and Toeplitz. Because of this triangular structure, there is a common number m of terms in the function expansions to control, which is realized via a complexity penalty. The advantage of this methodology is that it leads to very fast computations, produces no boundary effects due to extension at zero and cut-off at T and provides an estimator with the risk within a logarithmic factor of m of the oracle risk. We emphasize that we consider the true observational model with possibly non-equispaced observations which are available on a finite interval of length T which appears in many different contexts, and we account for the bias associated with this model (which is not present in the case T → ∞). The study is motivated by perfusion imaging using a short injection of contrast agent, a procedure which is applied for medical assessment of microcirculation within tissues such as cancerous tumours. The presence of a tuning parameter a allows the choice of the most advantageous time units, so that both the kernel and the unknown right-hand side of the equation are well represented for the deconvolution. The methodology is illustrated by an extensive simulation study and a real data example which confirms that the technique proposed is fast, efficient, accurate, usable from a practical point of view and very competitive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.